Imaging Commands

The scan engine is like a digital camera in the way it captures, manipulates, and transfers images. The following commands allow you to alter the way the scan engine performs these functions.

Single-Use Basis

Imaging Commands with their modifiers send instructions to the scan engine on a single-use basis, and take effect for a single image capture. Once that capture is complete, the scan engine reverts to its imaging default settings. If you want to permanently change a setting, you must use the serial default commands (see Chapter 10). When the serial default command is used, that selection becomes the new, permanent setting for the scan engine.

Command Syntax

Multiple modifiers and commands can be issued within one sequence. If additional modifiers are to be applied to the same command, just add the modifiers to that command. For example, to add 2 modifiers to the Image Snap command, such as setting the Imaging Style to 1P and the Wait for Trigger to 1T, you would enter **IMGSNP1P1T**.

Note: After processing an image capture command (IMGSNP or IMGBOX), you must follow it with an IMGSHP command if you want to see it on your terminal.

To add a command to a sequence, each new command is separated with a semicolon. For example, to add the Image Ship command to the above sequence, you would enter **IMGSNP1P1T;IMGSHP**.

The imaging commands are:

Image Snap - IMGSNP (page 7-1)

Image Ship - IMGSHP (page 7-3)

Intelligent Signature Capture - IMGBOX (page 7-10)

The modifiers for each of these commands follow the command description.

Note: The images included with each command description are examples only. The results you achieve may be different from those included in this manual. The quality of the output you receive will vary depending on lighting, quality of the initial image/object being captured, and distance of the scan engine from the image/object. To achieve a high quality image, it is recommended that you position your scan engine 4-6" (10.2-15.2 cm) away from the image/object you are capturing.

Step 1 - Take a Picture Using IMGSNP

Image Snap - IMGSNP

An image is taken whenever the hardware button is pressed, or when the Image Snap (IMGSNP) command is processed.

The image snap command has many different modifiers that can be used to change the look of the image in memory. Any number of modifiers may be appended to the IMGSNP command. For example, you can use the following command to snap an image, increase the gain, and have the beeper sound once the snap is complete: **IMGSNP2G1B**

IMGSNP Modifiers

P - Imaging Style

This sets the Image Snap style.

- 0P **Decoding Style**. This processing allows a few frames to be taken until the exposure parameters are met. The last frame is then available for further use.
- 1P Photo Style (default). This mimics a simple digital camera, and results in a visually optimized image.
- 2P Manual Style. This is an advanced style that should only be used by an experienced user. It allows you the most freedom to set up the scan engine, and has no auto-exposure.

B - Beeper

Causes a beep to sound after an image is snapped.

0B No beep (default)

1B Sounds a beep when the image is captured.

T - Wait for Trigger

Waits for a hardware button push before taking the image. This is only available when using Photo Style (1P).

- 0T Takes image immediately (default)
- 1T Waits for a button push, then takes the image

L - LED State

Determines if the LEDs should be on or off, and when. Ambient illumination (0L) is preferred for taking pictures of color documents, such as ID cards, especially when the scanner is in a stand. LED illumination (1L) is preferred when the scanner is handheld. LED State is not available when using Decoding Style (0P).

- OL LEDs off (default)
- 1L LEDs on

E - Exposure

Exposure is used in Manual Style only (2P), and allows you to set the exposure time. This is similar to setting a shutter speed on a camera. The exposure time determines how long the scanner takes to record an image. On a bright day, exposure times can be very short because plenty of light is available to help record an image. At nighttime, exposure time can increase dramatically due to the near absence of light. Units are 127 microseconds. (*Default = 7874*)

nE Range: 1 - 7874

Example of Exposure at 7874E with fluorescent lighting:

Example of Exposure at 100E with fluorescent lighting:

G - Gain

Gain is used in Manual Style only (2P). Like a volume control, the gain modifier boosts the signal and multiplies the pixel value. As you increase the gain, the noise in an image is also amplified.

- 1G No gain (default)
- 2G Medium gain
- 4G Heavy gain
- 8G Maximum gain

Example of Gain at

Example of Gain at

Example of Gain at

W - Target White Value

Sets the target for the median grayscale value in the captured image. For capturing close-up images of high contrast documents, a lower setting, such as 75, is recommended. Higher settings result in longer exposure times and brighter images, but if the setting is too high, the image may be overexposed. Target White Value is only available when using Photo Style (1P). (*Default = 125*)

nW Range: 0 - 255

Example of White Value at 75W:

Example of White Value at 125W:

Example of White Value at 200W:

D - Delta for Acceptance

This sets the allowable range for the white value setting (see W - Target White Value). Delta is only available when using Photo Style (1P). (*Default = 25*)

*n*D Range: 0 - 255

U - Update Tries

This sets the maximum number of frames the scan engine should take to reach the D - Delta for Acceptance. Update Tries is only available when using Photo Style (1P). (Default = 6)

*n*U Range: 0 - 10

% - Target Set Point Percentage

Sets the target point for the light and dark values in the captured image. A setting of 75% means 75% of the pixels are at or below the target white value, and 25% of the pixels are above the target white value. Altering this setting from the default is not recommended under normal circumstances. To alter grayscale values, W - Target White Value should be used. (*Default = 50*)

n% Range: 1 - 99

Step 2 - Ship a Picture Using IMGSHP

Image Ship - IMGSHP

An image is taken whenever the button is pressed, or when the Image Snap (IMGSNP) command is processed. The last image is always stored in memory. You can "ship" the image by using the IMGSHP command.

The image ship commands have many different modifiers that can be used to change the look of the image output. Modifiers affect the image that is transmitted, but do not affect the image in memory. Any number of modifiers may be appended to the IMGSHP command. For example, you can use the following command to snap and ship a bitmap image with gamma correction and document image filtering: **IMGSHP8F75K26U**

IMGSHP Modifiers

A - Infinity Filter

Enhances pictures taken from very long distances (greater than 10 feet or 3m). The Infinity Filter should not be used with IMGSHP Modifiers (page 7-3).

- 0A Infinity filter off (default)
- 1A Infinity filter on

Example of Infinity Filter off (0A) from approximately 12 feet (3.66m) away:

Example of Infinity Filter on (1A) from approximately 12 feet (3.66m) away:

C - Compensation

Flattens the image to account for variations in illumination across the image.

- 0C Compensation disabled (default)
- 1C Compensation enabled

Example of Compensation at 0C:

Example of Compensation at 1C:

D - Pixel Depth

Indicates the number of bits per pixel in the transmitted image (KIM or BMP format only).

- 8D 8 bits per pixel, grayscale image (default)
- 1D 1 bit per pixel, black and white image

E - Edge Sharpen

An edge sharpen filter cleans up the edges of an image, making it look cleaner and sharper. While edge sharpening does make the image look cleaner, it also removes some fine detail from the original image. The strength of the edge sharpen filter can be entered from 1 to 24. Entering a 23E gives the sharpest edges, but also increases noise in the image.

- 0E Don't sharpen image (default)
- 14E Apply edge sharpen for typical image
- *n*e Apply edge sharpen using strength n (n = 1-24)

Example of Edge Sharpen at 0E:

Example of Edge Sharpen at 24E:

F - File Format

Indicates the desired format for the image.

- 0F KIM format
- 1F TIFF binary
- 2F TIFF binary group 4, compressed
- 3F TIFF grayscale
- 4F Uncompressed binary (upper left to lower right, 1 pixel/bit, 0 padded end of line)
- 5F Uncompressed grayscale (upper left to lower right, bitmap format)
- 6F JPEG image (default)
- 8F BMP format (lower right to upper left, uncompressed)
- 10F TIFF color compressed image
- 11F TIFF color uncompressed image
- 12F JPEG color image
- 14F BMP color format
- 15F BMP Uncompressed raw image

H - Histogram Stretch

Increases the contrast of the transmitted image. Not available with some image formats.

- 0H No stretch (default)
- 1H Histogram stretch

Example of Histogram Stretch at 0H: Example of Histogram Stretch at 1H:

I - Invert Image

Invert image is used to rotate the image around the X or Y axis.

- 1ix Invert around the X axis (flips picture upside down)
- 1iy Invert around the Y axis (flips picture left to right)

Example of image not inverted:

Example of image with Invert Image set to 1ix:

Example of image with Invert Image set to 1iy:

IF- Noise Reduction

Used to reduce the salt and pepper noise in an image.

- 0if No salt and pepper noise reduction (default)
- 1if Salt and pepper noise reduction

Example of Noise Reduction Off (0if):

Example of Noise Reduction On (1if):

IR - Image Rotate

- Oir Image as snapped (rightside up) (default)
- 1ir Rotate image 90 degrees to the right
- 2ir Rotate image 180 degrees (upside down)
- 3ir Rotate image 90 degrees to the left

Example of Image Rotate set to 0ir:

Example of Image Rotate set to 1ir:

Example of Image Rotate set to 2ir:

Example of Image Rotate set to 3ir:

Example of Gamma

J - JPEG Image Quality

Sets the desired quality when the JPEG image format is selected. Higher numbers result in higher quality, but larger files. Smaller numbers result in greater amounts of lossy compression, faster transmission times, lower quality, but smaller files. (*Default* = 50)

- *nJ* Image is compressed as much as possible while preserving quality factor of n (n = 0 100)
- 0J worst quality (smallest file)
- 100Jbest quality (largest file)

K - Gamma Correction

Gamma measures the brightness of midtone values produced by the image. You can brighten or darken an image using gamma correction. A higher gamma correction yields an overall brighter image. The lower the setting, the darker the image. The optimal setting for text images is 50K.

- 0K Gamma correction off (default)
- 50K Apply gamma correction for brightening typical document image
- *n*K Apply gamma correction factor n (n = 0.1,000)

Example of Gamma Correction set to 0K:

Example of Gamma Correction set to 50K:

L, R, T, B, M - Image Cropping

Ships a window of the image by specifying the left, right, top, and bottom pixel coordinates. Device columns are numbered 0 through 1279, and device rows are numbered 0 through 959.

- *n*L The left edge of the shipped image corresponds to column *n* of the image in memory. Range: 000 843. (*Default* = 0)
- *n*R The right edge of the shipped image corresponds to column *n* 1 of the image in memory. Range: 000 843. (*Default = all columns*)
- *n*T The top edge of the shipped image corresponds to row *n* of the image in memory. Range: 000 639. (*Default = 0*)
- *n*B The bottom edge of the shipped image corresponds to row n 1 of the image in memory. Range: 000 639. (*Default = all rows*)

Uncropped Image:

Example of Image Crop set to 200B:

Example of Image Crop set to 300L:

Example of Image Crop set to 200T:

Alternately, specify the number of pixels to cut from the outside margin of the image; thus only the center pixels are transmitted.

*n*M Margin: cut *n* columns from the left, n + 1 columns from the right, *n* rows from the top, and n + 1 rows from the bottom of the image. Ship the remaining center pixels. Range: 0 - 238. (*Default = 0, or full image*)

Example of Image Crop set to 238M:

P - Protocol

Used for shipping an image. Protocol covers two features of the image data being sent to the host. It addresses the protocol used to send the data (Hmodem, which is an Xmodem 1K variant that has additional header information), and the format of the image data that is sent.

- 0P None (raw data)
- 2P None (default for USB)
- 3P Hmodem compressed (default for RS232)
- 4P Hmodem

S - Pixel Ship

Pixel Ship sizes an image in proportion to its original size. It decimates the image by shipping only certain, regularly spaced pixels. For example, **4S** would transmit every fourth pixel from every fourth line. The smaller number of pixels shipped, the smaller the image, however, after a certain point the image becomes unusable.

- 1S ship every pixel (default)
- 2S ship every 2nd pixel, both horizontally and vertically

3S ship every 3rd pixel, both horizontally and vertically

Example of Pixel Ship set to 1S:

Example of Pixel Ship set to 2S: Example of Pixel Ship set to 3S:

U - Document Image Filter

Allows you to input parameters to sharpen the edges and smooth the area between the edges of text in an image. This filter should be used with gamma correction (see page 7-7), with the scanner in a stand, and the image captured using the command:

IMGSNP1P0L168W90%32D

This filter typically provides better JPEG compression than the standard E - Edge Sharpen command (see page 7-9). This filter also works well when shipping pure black and white images (1 bit per pixel). The optimal setting is 26U.

- 0U Document image filter off (default)
- 26U Apply document image filter for typical document image
- *n*U Apply document image filter using grayscale threshold n. Use lower numbers when the image contrast is lower. 1U will have a similar effect to setting E - Edge Sharpen (page 7-5) to 22e. Range: 0-255.

Example of Document Image Filter set to 26U:

V - Blur Image

Smooths transitions by averaging the pixels next to the hard edges of defined lines and shaded areas in an image.

- 0V Don't blur (default)
- 1V Blur

Example of Blur Image Off (0V):

Example of Blur Image On (1V):

W - Histogram Ship

A histogram gives a quick picture of the tonal range of an image, or key type. A low-key image has detail concentrated in the shadows; a high-key image has detail concentrated in the highlights; and an average-key image has detail concentrated in the midtones. This modifier ships the histogram for an image.

0W Don't ship histogram (default)

1W Ship histogram

Histogram of image at left:

Image Size Compatibility

If you have applications that expect an image ship to return exactly 640x480 pixels, scan the Force VGA Resolution bar code. *Default = Native Resolution*.

Force VGA Resolution

* Native Resolution

Intelligent Signature Capture - IMGBOX

IMGBOX allows you to configure the size and location of a signature capture area relative to its proximity to a bar code. This allows you to tailor a signature capture area to a specific form. In order to use IMGBOX, you need a set form where the signature box location is in a known location relative to a bar code. You can input the overall size of the signature area, as well as specify how far the signature area is from the bar code, vertically and horizontally. You can also set the resolution and file format for the final output of the signature capture image.

Note: IMGBOX commands can only be triggered by one of the following types of bar codes: PDF417, Code 39, Code 128, Aztec, Codabar, and Interleaved 2 of 5. Once one of these symbologies has been read, the image is retained for a possible IMGBOX command.

Signature Capture Optimize

If you will be using your scan engine to capture signatures frequently, you should optimize it for this purpose. However, the speed of scanning bar codes may be slowed when this mode is enabled. *Default = Off.*

Optimize On

7 - 10

The following IMGBOX example was executed and viewed using QuickView software. This software is available at www.honeywellaidc.com. Click on Software Downloads. Select 4600r from the Products list, then select QuickView Software Utility.

Below is an example of a signature capture application. In this example, the aimer is centered over the signature capture area and the trigger is pressed. A single beep is emitted, indicating that the scan engine has read a Code 128 bar code and the data has been transferred to the host. An IMGBOX command may now be sent from the host to specify the coordinates of the signature capture area below that code, and indicating that only that area containing the signature should be transferred as an image to the host.

To see this example, align the aimer with the signature area (not with the bar code), then press the trigger.

Signature Capture Area

Send the following IMGBOX command string after the button push:

Example: IMGBOX245w37h55y.

Note: Case is not important in the command string. It is used here only for clarity.

The following image is captured:

The IMGBOX commands have many different modifiers that can be used to change the size and appearance of the signature image output by the scan engine. Modifiers affect the image that is transmitted, but do not affect the image in memory. Any number of modifiers may be appended to the IMGBOX command.

Note: The IMGBOX command will return a NAK unless a window size (width and height) are specified. See H - Height of Signature Capture Area (page 7-12) and W - Width of Signature Capture Area (page 7-13).

IMGBOX Modifiers

A - Output Image Width

This option is used to size the image horizontally. If using this option, set the resolution (R) to zero.

Example of Image Width set to 200A:

Example of Image Width set to 600A:

Signature Capture Area

B - Output Image Height

This option is used to size the image vertically. If using this option, set the resolution (R) to zero.

D - Pixel Depth

This indicates the number of bits per pixel in the transmitted image, which defines whether it will be grayscale or black and white.

- 8D 8 bits per pixel, grayscale image (default)
- 1D 1 bit per pixel, black and white image

F - File Format

This option indicates the type of file format in which to save the image.

- 0F KIM format
- 1F TIFF binary
- 2F TIFF binary group 4, compressed
- 3F TIFF grayscale
- 4F Uncompressed Binary
- 5F Uncompressed grayscale
- 6F JPEG image (default)
- 7F Outlined image
- 8F BMP format

H - Height of Signature Capture Area

The height of the signature capture area must be measured in inches divided by .01. In the example, the height of the area to be captured is 3/8 inch, resulting in a value of H = .375/0.01 = 37.5.

Example: IMGBOX245w37h55y.

K - Gamma Correction

Gamma measures the brightness of midtone values produced by the image. You can brighten or darken an image using gamma correction. A higher gamma correction yields an overall brighter image. The lower the setting, the darker the image. The optimal setting for text images is 50K.

- 0K Gamma correction off (default)
- 50K Apply gamma correction for brightening typical document image

*n*K Apply gamma correction factor n (n = 1-255)

R - Resolution of Signature Capture Area

The resolution is the number of pixels that the scan engine outputs per each minimum bar width. The higher the value for R, the higher the quality of the image, but also the larger the file size. Values begin at 1000. The scan engine automatically inserts a decimal point between the first and second digit. For example, use 2500 to specify a resolution of 2.5. Set to zero when using the A and B modifiers (see A - Output Image Width and B - Output Image Height on page 7-11).

Example of Resolution set to 0R:

Signature Capture Area

Example of Resolution set to 1000R:

Signature Capture Area

Example of Resolution set to 2000R:

Signature Capture Area

S - Bar Code Aspect Ratio

All dimensions used in IMGBOX are measured as multiples of the minimum element size of the bar code. The bar code aspect ratio allows you to set the ratio of the bar code height to the narrow element width. In the example, the narrow element width is .010 inches and the bar code height is 0.400 inches, resulting in a value of S = 0.4/0.01 = 40.

W - Width of Signature Capture Area

The width of the signature capture area must be measured in inches divided by .01. In the example, the width of the area to be captured is 2.4 inches, resulting in a value of W = 2.4/0.01 = 240. (A value of 245 was used in the example to accommodate a slightly wider image area.)

Example: IMGBOX245w37h55y.

X - Horizontal Bar Code Offset

The horizontal bar code offset allows you to offset the horizontal center of the signature capture area. Positive values move the horizontal center to the right and negative values to the left. Measurements are in multiples of the minimum bar width.

Example of Horizontal Offset set to 75X:

line	Cantura	Aner	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
141.140	C. CHENCKE INC.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	the second se

Example of Horizontal Offset set to -75X:

ingrature captaine		Signature Capture
--------------------	--	-------------------

Y - Vertical Bar Code Offset

The vertical bar code offset allows you to offset the vertical center of the signature capture area. Negative numbers indicate that the signature capture is above the bar code, and positive numbers indicate that the area is below the bar code. Measurements are in multiples of the minimum bar width.

Example of Vertical Offset set to -7Y:

Example of Vertical Offset set to 65Y:

Bi	mature	Captur	ic Area	1

RF Default Imaging Device

The scan engine supports imaging command processing (IMGSHP, IMGSNP, IMGBOX) so that EZConfig-Scanning (see page 9-3) and other applications are able to perform imaging functions as if they were communicating directly with a scanner. To accomplish this, the scanner uses a menu command called RF_DID (RF Default Imaging Device). RF_DID is the name of the scanner (BT_NAM) that is to receive imaging commands. The default for RF_DID is "*"indicating that imaging commands are to be sent to all associated scanners. Change this setting to RF_DID*scanner_name* to ensure that they are sent to a particular scanner. Refer to "Paging" on page 3-7 to generate a report containing the port, work group, scanner name, and address for each scanner. Refer to "Scanner Name" on page 3-18 set a unique name for each scanner.